

The wicked strong base that changes things



Lithium Diisopropylamide $p K_{a} \cong 40$
"LD" "H-LDA"

Not a nucleophile
because of the two
isopropyl groups
LDA will quantitatively deprotonate aldehydes, ketones and esters to make enolates!

Aldehydes


This side is favored by

Esters $\sim 10^{20!}$


$$
p K_{a}=23-25
$$

$$
p k_{a}=40
$$

This side is favored by $\sim 10^{15}$ !






B

$$
\stackrel{\begin{array}{c}
\text { Break } a \\
\text { bond }
\end{array}}{ }
$$

Draw both enantiomers The R group of the base must match the ester!!


New C-C


This is a much more stable anion compared to $\mathrm{eOCH}_{3}$, providing a strong driving force (motive) for the Claisen condensation reaction

What if we use 0.5 equivalents of LDA with an ester? equilibrium strongly
favors this side


2) $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$

0.5 equivalents
0.5 equivalents
(There are 2 ester molecules used for each product molecule so there can only be half the number of product molecules compared to starting ester molecules)

What if we use 1.0 equivalent of LDA with an ester?


The enolate forms quantitatively so there is no ester left to 2) ${\underset{\text { equivalent }}{1.0} \mathrm{Br}}_{\iint S_{N} 2}$ react with!

equivalent
All of the starting ester molecules end up as a the same number of product molecules with a new $C-C$ bond!

What if we use 1.0 equivalent of $e$ with an ester?

Only a small amount of this forms at any one time so there is always plenty of ester to react with as it forms


Overall Reaction


Note: Considerable detail was added to the preceding four pages compared to what I wrote in lecture - I wanted to capture more of the key points for you to study

$\beta$-Substituted
aldehydes, nitriles, ketones, or esters
$\alpha, \beta$-Unsaturated, nitriles, ketones, or esters
$\alpha, \beta$-Unsaturated aldehydes
$\beta$-Keto esters

## Acid Chlorides

$\beta$-Hydroxy aldehydes

Aldehydes
$\beta$-Ketoaldehyde
$\beta$-Diketone

Carboxylic esters






Racemic





Racemic






$H-X$ reacting with conjugated dienes


1,4 Addition - more stable, more highly substituted $C=C$


Products

1,2 addition 1,4 addition

$\mathrm{H}-\mathrm{Br}$

Temperature of Reaction

$$
\begin{array}{lll}
-78^{\circ} \mathrm{C} & 9090 & 1090 \\
+40^{\circ} \mathrm{C} & 1590 & 859
\end{array}
$$



Low temperature $\rightarrow$ Molecules have

Kinetic
Control
$\sim^{\text {Control }}$
"Fastest" wins enough energy to get over activation energy $A$, but not enough energy to get over activation energy $B$.
High temperature $\rightarrow$ Molecules have

Thermodynamic Control
 enough energy to get over activation energy $A$ and activation energy $B$

